Search results for "weak solutions"

showing 10 items of 11 documents

On the second-order regularity of solutions to the parabolic p-Laplace equation

2022

AbstractIn this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that $$D(\left| Du\right| ^{\frac{p-2+s}{2}}Du)$$ D ( D u p - 2 + s 2 D u ) exists as a function and belongs to $$L^{2}_{\text {loc}}$$ L loc 2 with $$s>-1$$ s > - 1 and $$1<p<\infty $$ 1 < p < ∞ . The range of s is sharp.

osittaisdifferentiaaliyhtälötp-parabolic functionstime derivativeSobolev regularityMathematics::Analysis of PDEsfundamental inequalityWeak solutionsMathematics (miscellaneous)Fundamental inequalityweak solutionsGRADIENT111 MathematicsTime derivativeEQUIVALENCE
researchProduct

On Problems Driven by the (p(·) , q(·)) -Laplace Operator

2020

The aim of this paper is to prove the existence of at least one nontrivial weak solution for equations involving the (p(· ) , q(· ) ) -Laplace operator. The approach is variational and based on the critical point theory.

Settore MAT/05 - Analisi Matematica(p(· ) q(· ))-Laplace operatorweak solutionscritical point
researchProduct

On the regularity of very weak solutions for linear elliptic equations in divergence form

2020

AbstractIn this paper we consider a linear elliptic equation in divergence form $$\begin{aligned} \sum _{i,j}D_j(a_{ij}(x)D_i u )=0 \quad \hbox {in } \Omega . \end{aligned}$$ ∑ i , j D j ( a ij ( x ) D i u ) = 0 in Ω . Assuming the coefficients $$a_{ij}$$ a ij in $$W^{1,n}(\Omega )$$ W 1 , n ( Ω ) with a modulus of continuity satisfying a certain Dini-type continuity condition, we prove that any very weak solution $$u\in L^{n'}_\mathrm{loc}(\Omega )$$ u ∈ L loc n ′ ( Ω ) of (0.1) is actually a weak solution in $$W^{1,2}_\mathrm{loc}(\Omega )$$ W loc 1 , 2 ( Ω ) .

osittaisdifferentiaaliyhtälötPure mathematicsvery weak solutionsApplied MathematicsWeak solution010102 general mathematicselliptic equations01 natural sciencesOmegaModulus of continuity010101 applied mathematicsElliptic curve0101 mathematicsDivergence (statistics)AnalysisMathematics
researchProduct

Gradient regularity for elliptic equations in the Heisenberg group

2009

Abstract We give dimension-free regularity conditions for a class of possibly degenerate sub-elliptic equations in the Heisenberg group exhibiting super-quadratic growth in the horizontal gradient; this solves an issue raised in [J.J. Manfredi, G. Mingione, Regularity results for quasilinear elliptic equations in the Heisenberg group, Math. Ann. 339 (2007) 485–544], where only dimension dependent bounds for the growth exponent are given. We also obtain explicit a priori local regularity estimates, and cover the case of the horizontal p-Laplacean operator, extending some regularity proven in [A. Domokos, J.J. Manfredi, C 1 , α -regularity for p-harmonic functions in the Heisenberg group for …

Mathematics - Differential GeometryMathematics(all)Pure mathematicsp-LaplaceanGeneral MathematicsOperator (physics)Mathematical analysisDegenerate energy levelsHeisenberg groupWeak solutions35J60RegularityElliptic operatorMathematics - Analysis of PDEsDifferential Geometry (math.DG)Cover (topology)Euclidean geometryFOS: MathematicsHeisenberg groupExponentLinear equationAnalysis of PDEs (math.AP)MathematicsAdvances in Mathematics
researchProduct

Viscosity solutions of the Monge-Ampère equation with the right hand side in Lp

2007

We compare various notions of solutions of Monge-Ampère equations with discontinuous functions on the right hand side. Precisely, we show that the weak solutions defined by Trudinger can be obtained by the vanishing viscosity approximation method. Moreover, we investigate existence and uniqueness of Lp-viscosity solutions.

Monge-Ampère equationsViscosityClassical mechanicsViscosity solutions; weak solutions; Monge-Ampère equationsSettore MAT/05 - Analisi MatematicaGeneral MathematicsViscosity solutionsweak solutionsMathematical analysisMonge–Ampère equationMathematics
researchProduct

Analysis of a parabolic cross-diffusion population model without self-diffusion

2006

Abstract The global existence of non-negative weak solutions to a strongly coupled parabolic system arising in population dynamics is shown. The cross-diffusion terms are allowed to be arbitrarily large, whereas the self-diffusion terms are assumed to disappear. The last assumption complicates the analysis since these terms usually provide H 1 estimates of the solutions. The existence proof is based on a positivity-preserving backward Euler–Galerkin approximation, discrete entropy estimates, and L 1 weak compactness arguments. Furthermore, employing the entropy–entropy production method, we show for special stationary solutions that the transient solution converges exponentially fast to its…

Self-diffusioneducation.field_of_studyKullback–Leibler divergenceRelative entropyStrong cross-diffusionApplied MathematicsMathematical analysisPopulationLong-time behavior of solutionsWeak competitionArbitrarily largeCompact spaceExponential growthPopulation modelEntropy (information theory)Global-in-time existence of weak solutionseducationPopulation equationsAnalysisMathematicsJournal of Differential Equations
researchProduct

On the interior regularity of weak solutions to the 2-D incompressible Euler equations

2016

We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ for weak solutions in the energy space $$L_t^\infty L_x^2$$ , satisfying appropriate vorticity estimates. We also obtain impr…

Pure mathematicsIntegrable systemDimension (graph theory)Mathematics::Analysis of PDEsContext (language use)yhtälötSpace (mathematics)01 natural sciencessymbols.namesakeMathematics - Analysis of PDEs35Q31 (Primary) 76B03 35B65 35Q30 (Secondary)weak solutions0103 physical sciencesinterior regularityBoundary value problem0101 mathematicsMathematicsmatematiikkaApplied Mathematics010102 general mathematicsVorticityEuler equationsEuler equationssymbols010307 mathematical physicsAnalysisEnergy (signal processing)Calculus of Variations and Partial Differential Equations
researchProduct

Discontinuous solutions of linear, degenerate elliptic equations

2008

Abstract We give examples of discontinuous solutions of linear, degenerate elliptic equations with divergence structure. These solve positively conjectures of De Giorgi.

Mathematics(all)Applied MathematicsGeneral MathematicsWeak solutionMathematical analysisDegenerate energy levelsStructure (category theory)Degenerate equationDegenerate elliptic equationsWeak solutionsElliptic curveDivergence (statistics)Linear equationContinuityMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain

2021

Abstract We study the wave inequality with a Hardy potential ∂ t t u − Δ u + λ | x | 2 u ≥ | u | p in  ( 0 , ∞ ) × Ω , $$\begin{array}{} \displaystyle \partial_{tt}u-{\it\Delta} u+\frac{\lambda}{|x|^2}u\geq |u|^p\quad \mbox{in } (0,\infty)\times {\it\Omega}, \end{array}$$ where Ω is the exterior of the unit ball in ℝ N , N ≥ 2, p > 1, and λ ≥ − N − 2 2 2 $\begin{array}{} \displaystyle \left(\frac{N-2}{2}\right)^2 \end{array}$ , under the inhomogeneous boundary condition α ∂ u ∂ ν ( t , x ) + β u ( t , x ) ≥ w ( x ) on  ( 0 , ∞ ) × ∂ Ω , $$\begin{array}{} \displaystyle \alpha \frac{\partial u}{\partial \nu}(t,x)+\beta u(t,x)\geq w(x)\quad\mbox{on } (0,\infty)\times \partial{\it\Omega}, \e…

PhysicsMathematics::Functional Analysis35b3335b44QA299.6-433critical exponentMathematics::Complex Variables010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEshardy potentialMathematics::Spectral Theoryexterior domain01 natural sciencesDomain (software engineering)010101 applied mathematics35l05Settore MAT/05 - Analisi Matematicawave inequalitiesglobal weak solutions0101 mathematicsCritical exponentAnalysisAdvances in Nonlinear Analysis
researchProduct

C1,α-regularity for variational problems in the Heisenberg group

2017

We study the regularity of minima of scalar variational integrals of $p$-growth, $1<p<\infty$, in the Heisenberg group and prove the H\"older continuity of horizontal gradient of minima.

osittaisdifferentiaaliyhtälötNumerical AnalysisregularityHeisenberg groupsApplied Mathematicsp-Laplacian010102 general mathematicsScalar (mathematics)subelliptic equationsHölder condition01 natural sciences35H20 35J70010101 applied mathematicsMaxima and minimaMathematics - Analysis of PDEsweak solutionsPhysics::Atomic and Molecular Clustersp-LaplacianHeisenberg group0101 mathematicsAnalysisMathematical physicsMathematicsAnalysis &amp; PDE
researchProduct